
RoAMer: Robust Automated Malware Unpacker

 

Thorsten Jenke
Daniel Plohmann
Elmar Padilla

2019-04-03

Jenke, Plohmann, Padilla RoAMer 2019-04-03 1 / 45



Outline

1 Introduction

2 Prerequisites

3 Methodology

4 Implementation

5 Evaluation

6 Conclusion

7 Release

Jenke, Plohmann, Padilla RoAMer 2019-04-03 2 / 45



Presentation agenda

1 Introduction

2 Prerequisites

3 Methodology

4 Implementation

5 Evaluation

6 Conclusion

7 Release

Jenke, Plohmann, Padilla RoAMer 2019-04-03 3 / 45



Motivation

In-depth analysis is a core building block for understanding malware
Most of today’s malware is packed or obfuscated
Unpacking is a necessary first step for analysis
Automation of unpacking is highly desirable

Jenke, Plohmann, Padilla RoAMer 2019-04-03 4 / 45



Previous Approaches

There have been numerous previous approaches
They are either. . .

not well tested against real-world malware
lacking in generality
lacking in evasion resilience
lacking in through-put
not released for the community

Jenke, Plohmann, Padilla RoAMer 2019-04-03 5 / 45



RoAMer

Introducing the Robust Automated Malware Unpacker (RoAMer)
It is a new automated generic unpacker
We evaluated our approach with two diverse data sets

Malpedia
Malshare 2017

Jenke, Plohmann, Padilla RoAMer 2019-04-03 6 / 45



Development

Basically my Master Thesis
Supervised by Daniel Plohmann and later by Elmar Padilla

Jenke, Plohmann, Padilla RoAMer 2019-04-03 7 / 45



Presentation agenda

1 Introduction

2 Prerequisites

3 Methodology

4 Implementation

5 Evaluation

6 Conclusion

7 Release

Jenke, Plohmann, Padilla RoAMer 2019-04-03 8 / 45



Unpacked vs. Dumped

Unpacked
As close as possible to the original payload prior to packing
Typically achieved by intercepting execution after unwrapping
Can be executed as-is

Dumped
Extracting system’s memory segments containing the payload (also known as dumping)
In most cases cannot be run as-is
Only an approximation of the original malware
Initialized data fragments

Jenke, Plohmann, Padilla RoAMer 2019-04-03 9 / 45



(Dis-)Advantages

Dumping is technically easier to achieve
Static analysis often does not require a perfect reconstruction of the original
Unpacked samples are easier to utilize in dynamic analysis
Dumps contain run-time data, such as dynamic imports and decrypted strings
There are approaches for reconstructing samples from memory dumps into an executable
form
Goal of RoAMer: enable static analysis by dumping malware

Jenke, Plohmann, Padilla RoAMer 2019-04-03 10 / 45



Types of Packers

6 Types of packers defined by Ugarte-Pedrero [3]
Type I: Simplest packer
Type II: Multiple simple packers in a line
Type III: Multiple simple packers in a tree
Type IV: Payload triggers packers
Type V: Payload code is mangled with packer code
Type VI: Decrypt on demand and then encrypted again

Jenke, Plohmann, Padilla RoAMer 2019-04-03 11 / 45



Presentation agenda

1 Introduction

2 Prerequisites

3 Methodology

4 Implementation

5 Evaluation

6 Conclusion

7 Release

Jenke, Plohmann, Padilla RoAMer 2019-04-03 12 / 45



Idea

Heavily inspired by the methodology of real-world analysts:
1 Execute malware in sandbox environment
2 Focusing on suspicious behavior like startup of new processes, sudden changes in memory

sizes. . .
3 Dump new and suspicious regions
4 Decide whether to continue investigation or commence static analysis on dumps

Jenke, Plohmann, Padilla RoAMer 2019-04-03 13 / 45



Idea

Assumption: New memory regions have to be allocated for malware to run
This makes the payload directly observable and therefore "dumpable"

Jenke, Plohmann, Padilla RoAMer 2019-04-03 14 / 45



Filters

Therefore, algorithm returns a set of dumps of suspicious regions
Desired target dump among libraries, heap-sections, etc.
Filters have to be set in place to find the desired dump

Jenke, Plohmann, Padilla RoAMer 2019-04-03 15 / 45



Limitations

Userland-only
Requires one point in time where the whole image is exposed in memory
Only packers I through V comply to this
Typical problems with native execution of malware (sleep, specific time, etc.)

Jenke, Plohmann, Padilla RoAMer 2019-04-03 16 / 45



Presentation agenda

1 Introduction

2 Prerequisites

3 Methodology

4 Implementation

5 Evaluation

6 Conclusion

7 Release

Jenke, Plohmann, Padilla RoAMer 2019-04-03 17 / 45



System Design

Written in Python 2.7 for Windows 7 32/64bit
One component residing on the host system and the other in client
Host part controls VM and interface to the user
Client part (agent) is responsible for unpacking
Interaction and observation with the memory is done through the Windows API

Jenke, Plohmann, Padilla RoAMer 2019-04-03 18 / 45



Output Filters

1 PE-header whitelist filter
2 Eliminate non-executable regions that are not adjacent to an executable region

Jenke, Plohmann, Padilla RoAMer 2019-04-03 19 / 45



Adressing Evasion Techniques

Debugger detection
Fingerprinting VM
User Interaction
Evading all other techniques: NtTerminateProcess-Hook

Jenke, Plohmann, Padilla RoAMer 2019-04-03 20 / 45



Workflow

Jenke, Plohmann, Padilla RoAMer 2019-04-03 21 / 45



Presentation agenda

1 Introduction

2 Prerequisites

3 Methodology

4 Implementation

5 Evaluation

6 Conclusion

7 Release

Jenke, Plohmann, Padilla RoAMer 2019-04-03 22 / 45



Metrices

Correctness
Precision
Speed

Jenke, Plohmann, Padilla RoAMer 2019-04-03 23 / 45



Correctness

Is the desired dump among the output?
Number of additional dumps does not factor in
True, False, No-changes

Jenke, Plohmann, Padilla RoAMer 2019-04-03 24 / 45



Precision

How many undesired dumps are among the output?
The additional amount of undesired dumps may become too high
The higher the precision the higher the quality of the output

Jenke, Plohmann, Padilla RoAMer 2019-04-03 25 / 45



Speed

The time that the methodology needs to unpack the malware
Proposed method involves unsupervised execution of malware for predefined time
Unfeasibility of algorithm grows with the amount of time needed

Jenke, Plohmann, Padilla RoAMer 2019-04-03 26 / 45



Speed

Therefore speed is the amount of time passed until the first correct output dump is
observable

Jenke, Plohmann, Padilla RoAMer 2019-04-03 27 / 45



Setup

Two datasets: Malpedia [2] and Malshare [1] 2017
Malpedia

Well curated malware corpus
Ground truth through manually unpacked/dumped reference samples

Malshare 2017
Every PE-file uploaded to Malshare in 2017
Contains also potentially goodware and not packed samples
No ground truth available

Each sample runs for 10 minutes with and without hook

Jenke, Plohmann, Padilla RoAMer 2019-04-03 28 / 45



Malpedia Correctness

TLSH to compare manually and automatically dumped samples
Yara signatures from Malpedia’s database to determine correctness

Jenke, Plohmann, Padilla RoAMer 2019-04-03 29 / 45



Malpedia Correctness

with hook without
hook

0

500

1,000

1,500 1,417

1,037

71 138
36

349nu
m
be
r
of

ru
ns

true
false

no changes

Figure: Malpedia correctnessJenke, Plohmann, Padilla RoAMer 2019-04-03 30 / 45



Malshare Correctness

No ground truth available
Comparison of original header vs. dumped header
Therefore not packed samples and goodware considered incorrect

Jenke, Plohmann, Padilla RoAMer 2019-04-03 31 / 45



Malshare Correctness

with hook without
hook

0

500

1,000

1,500

2,000

2,500 2,241

1,088

414 461

91

1,197

nu
m
be
r
of

ru
ns

true
false

no changes

Jenke, Plohmann, Padilla RoAMer 2019-04-03 32 / 45



Malpedia Precision

Malpedia w/o Hook Malpedia w/ Hook
min 1 1
25% 1 4
Average 29.7 19.1
Median 2 6
75% 5 12
max 17703 6313

Table: Number of dumps for Malpedia

Jenke, Plohmann, Padilla RoAMer 2019-04-03 33 / 45



Malpedia Precision

Malpedia w/o Hook Malpedia w/ Hook
min 0% 0%
25% 0% 0%
Average 217% 439%
Median 1% 29%
75% 33% 112%
max 41338% 91575%

Table: Overhead size for Malpedia

Jenke, Plohmann, Padilla RoAMer 2019-04-03 34 / 45



Malshare Precision

Malshare w/o Hook Malshare w/ Hook
min 1 1
25% 3 4
Average 7.8 11.29
Median 5 7
75% 7 13
max 89 171

Table: Number of dumps for Malshare

Jenke, Plohmann, Padilla RoAMer 2019-04-03 35 / 45



Malshare Precision

Malshare w/o Hook Malshare w/ Hook
min 0% 0%
25% 1% 3%
Average 200% 230%
Median 5% 25%
75% 48% 75%
max 112250% 112230%

Table: Overhead size for Malshare

Jenke, Plohmann, Padilla RoAMer 2019-04-03 36 / 45



Malpedia Speed

Malpedia w/o Hook Malpedia w/ Hook
Min 11 11
25% 11 11
Average 21.59 17.81
Median 11 11
75% 11 11
Max 641 626

Table: Dump timing for Malshare in seconds

Jenke, Plohmann, Padilla RoAMer 2019-04-03 37 / 45



Malshare Speed

Malshare w/o Hook Malshare w/ Hook
Min 11 11
25% 11 11
Average 17.02 15.39
Median 11 11
75% 16 11
Max 596 563

Table: Dump timing for Malshare in seconds

Jenke, Plohmann, Padilla RoAMer 2019-04-03 38 / 45



Discussion

Hook increases correctness and speed
Hook decreases precision
Tradeoff between correctness, speed, and precision
Enable or disable the hook according to circumstances

Jenke, Plohmann, Padilla RoAMer 2019-04-03 39 / 45



Presentation agenda

1 Introduction

2 Prerequisites

3 Methodology

4 Implementation

5 Evaluation

6 Conclusion

7 Release

Jenke, Plohmann, Padilla RoAMer 2019-04-03 40 / 45



Conclusion

RoAMer utilizes a technique commonly used by malware analysts
Evaluated RoAMer against two data-sets
With promising results
Good basis for future work

Jenke, Plohmann, Padilla RoAMer 2019-04-03 41 / 45



Future Work

Unpacker based on introspection
Post-processing of dumps
Increasing compatibility with all packer classes
Other ways to determine end of monitoring phase

Jenke, Plohmann, Padilla RoAMer 2019-04-03 42 / 45



References
Cutler, S.
Malshare.
http://malshare.com/.
Accessed: 2019-02-12.

Plohmann, D., Clauss, M., Enders, S., and Padilla, E.
Malpedia: A collaborative effort to inventorize the malware landscape.
The Journal on Cybercrime and Digital Investigations 3, 1 (2018).

Ugarte-Pedrero, X., Balzarotti, D., Santos, I., and Bringas, P. G.
Sok: deep packer inspection: a longitudinal study of the complexity of run-time packers.
In 2015 IEEE Symposium on Security and Privacy (2015), IEEE, pp. 659–673.

Jenke, Plohmann, Padilla RoAMer 2019-04-03 43 / 45

http://malshare.com/


Presentation agenda

1 Introduction

2 Prerequisites

3 Methodology

4 Implementation

5 Evaluation

6 Conclusion

7 Release

Jenke, Plohmann, Padilla RoAMer 2019-04-03 44 / 45



Release

Code is not in a good place, yet
Please wait for the release on https://github.com/UrmelAusDemEis/RoAMer

thorsten.jenke@fkie.fraunhofer.de
Thank you for your kind attention.

Jenke, Plohmann, Padilla RoAMer 2019-04-03 45 / 45

https://github.com/UrmelAusDemEis/RoAMer

	Introduction
	Prerequisites
	Methodology
	Implementation
	Evaluation
	Conclusion
	Release

